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SUMMARY -~

An analytical expression has been derived for an effective thermal
conduction of bodies of various structures. The solution of an inverse
problem is considered, i. e. the determination of the structure of a body
by an effective coefficient of thermal conduction.

Consideration is also given to a possible structure of the lunar sur-
face layer, based on the analysis of radioastronomical data relative to the
parameter y= (Aoc) ¥2 and some additional assumptions.

S
* *

The study of generalized conduction (thermal conduction, electrical
conductivity and others) of diphase systems wuas performed by numerous inves-
tigators. Analytical dependences are proposed, which link the physical and
structural parameters with the effective transfer coefficients for separate
forms of diphase systems' structures [l - 4], such as the granular structure
of a solid with closed and communicating pores. :

The solution of the inverse problem is of interest; namely, the deter-
mination by the effective transfer coefficient (for example, the effective
heat conductivity of a diphase system) of its structure. Such a problem
has arisen, in particular, when studying the structure of the surface layer
of the Moon. According to precision measurements of temperature during

lunations, the following value of the parameter Y was obtained:[5]:
L
Y = (Apc) 2 = 400

Assuming the density of lunar matter from the surface layer o > 0.4 g cm 3,
which corresponds to the density of terrestrial volcanic rocks ( such as tuff)
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and the heat capacity of the Moon's matter ¢ 0.2 cal-g™! deg™!= 840 joule-
.kg-! deg-!, we find by the value of y the effective heat conductivity of the
matter of Moon's superficial layer:

A =8 +107° cal-sec”lam™l-deg™! = 0.035 w'm~1-deg1.

Let us compare the obtained value of the effective heat conductivity with
the heat conductivity of various structures in conditions of deep vacuum. The
heat conductivity factor for a mineral dust in vacuum and normal temperature
oscillates within the limits from 0.003 to 0.1 w-m-1 deg-! [8, 9]; that of a
highly porous solid in vacuum for a density » =0.4 :0.6 g.cm-3 varies within
the limits from 0.07 to 0.7 w.m-! deg-!. Consequently, for the lunar surface
layer it should occupy an intermediate position between the heat conductivity
factors of mineral dust and of a solid porous body of mineral origin in condi-
tions of deep vacuum. These results allow us to assume the existence of inter-
mediate structures, which in the following we shall designate as ''dendritic".
A sketch of such a structure is given in the Fig.l , where the dendritic struc-
ture is represented in the form of a solid body with communicating pores (Fig.la)
of which the skeleton consists of beams with variable cross section.

The dendritic structures may be obtained artificially. Description of expe-
riments is brought out in the work [6], in which "caking' of separate particles
of granular systems into conglomerates is observed in conditions of deep vacuum
and at temperatures of the order of 500°K. At the same time the surface of the
contact along which "caking" of particles takes place is 10? +10“times smaller
than the area of their maximum cross section.

Let us find the effective heat conductivity of a dendritic structure in
conditions of deep vacuum (the gas-filler pressure in pores is < 1 -10% mm Hg)
at temperatures from 0° to 300°K. In this case the radial and molecular heat
transfer is negligibly small by comparison with the heat transfer through the
hard skeleton. To facilitate the calculations we shall take advantage of the
notion of "elementary mesh'" (of minimum volume, maigtaining all the properties
of dendritic structure), by multiple repetition of which it is possible to
obtain a system with dendritic structure [3].

To begin with we shall consider thc cffective heat conductivity of a solid
with communicating pores, of which the skeleton consists of beams with constant
cross section (Fig.la). The shape of the elementary mesh is shown in Fig.Za.
The effective heat conductivity of such structures in conditions of deep vacuum
may be determined by the formula [3]

2
Aegf = MXs X = A/L, (1

where A; is the heat conductivity of skeleton's material, A is the dimension of
of beam's cross section, L is the dimension of the elementary mesh (see Fig.lb).
Parameter x depends unambiguously on the porousness of the material; this depend-
ence 1s brought up below (see (8)).

In real diphase systems pores are chaotically distributed by volume. Such
a system may be schematically represented in the form of cubic skeletons shifted
relative to one another (Fig.lc). An elementary mesh of such a structure is




represented in Fig.2b. The thermal flux enters the elementary mesh through
the total cross section of a beam with the area S., =A% The shift of pores
increases the path length of the thermal flux alony the conducting phase, i. e.
along the solid skeleton, increasing by the same token the thermal resistance
of the elementary mesh.
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Fig.l. Schematic representation of the struc-

V/// ture of a solid with communicating pores :
a) skeleton of beams with constant cross sec-
I 2;/ tion;b) skeleton of beams with variable cross

section; ¢) skeleton of the type a, but with
pores shifted relative to one another.

c)

Let us conditionally break down the beams in the elementary mesh into se-
parate parts (1 - 5) (Fig. 2bt) and compute their thermal resistances, assuming
that the lines of the thermal flux in separate beams are mutually parallel.

In this case the thermal resistance of separate parts of the mesh may be deter-
mined according to the formula for a plane wall:

Ri= Li/MSi, (2)

where Lj and S are respectively the length and the area of the cross section
of the i-th part of the mesh,); is the heat conductivity of the skeleton.
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Fig.2. Elementary mesh for different structures

a) structure of Fig.la,b;b) structure of Fig.lc;
c) scheme of combination of thermal resistances
in an elementary mesh




From Fig. 2b and formula (2) it may be seen that

1 AR L3 A L—2A
R, =LjnA, R,= 71—A? D R:x“"A/}'xA , Re=- A . (3)
The scheme of the combination of thermal resistances of separate parts R;,
entering into the elementary mesh is represented in Fig.2c. The total (effect-
ive) resistance R,y of an elementary mesh is not difficult to determine:

1
Rerp=2r, | R, R = oy 3= 2oyt b ), clz-l% ) 4)
I f
From Eqs. (3) and (4) we obtain
3L—A 3 —
Ropp = —=f 3L —4 (5)
”I‘Sux /~1A-

If we utilize the notion of effective heat conduction factor () gg) of an ele-
mentary mesh, its thermal resistance may be represented in the form

Lo ,
Rgpp=—eff . 2 (6)
Aeff Seff Aeff L

where Logg and Sgee are the length and the area of the elementary mesh.

Bquating Eqs. (5) and (6), we obtain the expression for the effective heat
conductivity of the skeleton with beams of constant cross sections with shifted
pores:

(7)

deff =Ax2 £(x), £(x) =
3 -x

At the same time parameter x in formulas (1) and (7) is linked with the poro-
sity p by the dependence [3]

Vpor 1
p=1+2x -3, p L (8)
V P
where V. and V are respectively the volume of pores %n the body and the total

volume ggrthe body; p,and p,are the volumetric densities of the porous body
and of the skeleton.

The accounting for pore shift in a solid body with communicating pores
decreases the effective heat conductivity; the values of A gggcomputed by formu-
las (1) and (7) differ by less than 30%. Consequently, such structures still are
not intermediate between the granular system and a solid porous body.

The cases considered refer to structures with beams of constant cross sec-
tion. In dendritic structures the area of conducting phase's cross section




vary sharply, fomming peculiar narrowings - a sort of neck. Assume now that

the thermal flux enters the elementary mesh and exits from it only through the

neck with cross section area S, =S neck = a?, smaller than the cross section

area S, = A (Fig.2b). Let us substitute the skeleton of the elementary mesh

con51st1ng of beams with constant cross section, by a cylinder of reduced length
I, whereupon the themmal resistance of such a cyllnder R. 1s equal to the ef-

fective thermal resistance R, pe of the elementary mesh:

3L - A
R. = L 2 o=
X s Rerf S (9)

(we shall consider thut S:.=4a2 , A= A1 ). From formula (9) we obtain the ex-
pression for the reduced length ¢ of the cylinder:

[~ 3L - A. (10)

In this case the thermal flux enters the extremity of the cylinder through
the surface of which the arca is S, o= a?, and emerges from the opposite end
through a surface of identical area; we shall consider the remaining surfaces
as adiabatic (Fig.3). The distortion of the thermal current lines leads to
the variation of cylinder's thermal resistance.
If the mean surface temperatures of the neck

at inlet and outlet are respectively t; and t,, ")
and the thermal flux capacity is P, the ther- :
mal resistance R of the cylinder is by defi- |
nition |
-t |
R = P (11) .
A .—-—-1 'r——<
The tempecrature diflcrence 4 -f2 is then 28]
linked with the geometrical and physical para- 1

meters of the cylinder by the dependence [7]:

Fig.3. Thermal current lines
in a part of cylindrical beam
of variable cross section

—f = ﬂ{ 1= 168 Aambll) g el Ko (nwb)l) — K (nwr ity Jyn = 60]
1S n? ,:1 1”3 (nxrfl) J (12)
where n = 2k + 1, k=0,1, 2, 3, ..., P 1is the total thermal flux, S 1is

the area of the neck, 1, r, b are respectively the length and the radius of the
cylinder and the radius of the neck, A; is the cylinder's thermal conductivity
factor, J. 1is a Bessel function of first order of imaginary argument, K, is

a MacDonald function of first order.

From expressions (11) and (1Z) follows

R = Ro-o(b/r, v/l), Ry = ¢/, (13)



where R is the themal resistance of the cylinder with areca S =nb?,
Ob/r, ril)=1-16/n? 2 [y (nm b/1)] [|n* J(n = r[l)]) X
nel
X L rly Ky wbjly—Ky(nwrjly J, (nx b, (14)

The values of the function o¢(b/r, r/t), computed by formula (11) for a series
of relations b/r and r/i, are represented in Fig.4.
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Fig.4 Graph of the function (r/¢, b/r)

Let us substitute the cylinder a by a beam of rectangular cross section,
at the basis of which lies a square with the side A, and let us consider that
the thermal flux enters and departs from it through the transverse cross sec-
tion of a square with side a. At the same time nb? = a2, nr? =a2. Then the
function ¢(b/r, r/t) = o(a/a, A/t) characterizes the variation of beam's re-
sistance on account of the variation of the transverse cross section.

The value of the thermal resistance R, of the beam of constant cross sec-
tion may be determined by formula (5):

Ry = I]\S,, = I} a2, (15)




The value of the thermal resistance of the beam with variable cross section
is determined from expressions (13) and (15):

l a A
R= ® (_3 mw>.
at AT (16)

The effective resistance ol an elementary mesh for a system with pore shift
and beams of variable cross section may be expressed in the form (see Fig.2b)

Equating (16) and (17) as was done in the case of pore shift, we shall obtain
the expression for the effective heat conductivity of dendritic structure:

C ) 22 fx)
Aef{ =hX7Y “"‘“‘—_‘“(D(y’ Al

For small values of y (beginning with y 5 +1072) the determination of
the function ¢(y, A/f) (rom the graph leads to a great error. To diminish it
the dependence between ¢(y, A/¢) and y may be approximated by a linear func-
tion of the form -

y=alA, (18)

¢(y, A/t) = 2.22y &/t (y ¢ 5 *1072) (19)
It follows from Eqs (18) and (19) that

Aegf = 0.9 X xy. (20)
eff 1

All the above analytical dependences refer to a model of dendritic structure
with monolithic skeleton.

Let us consider now a dendritic structure having a porous skeleton with
communicating pores of second order of smallness (structure close to the natu-
ral volcanic tuff). Let us subsdivide the total porosity of the diphase system
p into the external p; and the internal p,

P=p * P, (21)
where
P = Vpor/Vs  P1=Vpor 1/Vs Py = Vpor o/ Vs
Voor being the volume of all pores, V.o, , that outside the skeleton, V..,

the volume of pores inside the skeleton. V is the total volume of an element-
ary mesh.

Let us introduce the notion of skeleton porosity
Psk =Vpor 2 Vsio (22)

where VSk is the total volume of the skeleton.



It may be shown that

= PP (23)
1—p

Then the calculation of the effective heat conductivity is performed in two

stages. In the first stage the heat conductivity of the porous skeleton

is determined by formulas (7) and (8) as a function of its porosity pg.

The value obtained for the heat conductivity of a hard skeleton A . is substi-

tuted into formula (18) instead of X; and the effective heat conductivity of

the dendritic structure is determined as a whole. Eqg. (7) may then be writ-

ten in the form

Psk

)\Sk = )\,X%f(.fg) , (24)

and the effective heat conductivity (18) may then be expressed as follows:

) 2 f(X)f(Y_,)
Aeff = hix} Xy Tpm ) (25)

where x; 1is the root of Eq, (8), composed for p = p;, X, 1s the root of
Eq. (8) for p = pgk. ™ Then Eq. (23) takes the form

p; —2p, +p=0,
whence it follows that
pl=1'_" 1/,-_1-___[5. (26)

Taking into account the condition p;=pgk, we obtain from formula (25) the
minimum value of the effective heat conductivity:

Xeff min =hx'W{f(x)]| YD (y, AJl). (27)

Let us perform by the method proposed the calculation of the effective
heat conductivity of a volcanic tuff in vacuum. A direct consideration of a
volcanic tuff with the aid of a stereomicroscope has shown that the tuff has
a dendritic structure and a porous skeleton. The heat conductivity of a vol-
canic tuff is A;= 2.5 w-m™? deg?, the volume density of the skeleton without
pores is p; = 2.5 103 kg-m™! [10]. The most probable density of the tuff in
“"lunar conditions' would be p = 400 :800 kg m™! [5]. The calculation of jeff
is performed according to formulas (8) and (18) for various values of y. The
results of the calculation of A = \(p)are plotted in Fig. 5.

As an example we shall consider the calculation of the dependence of
Xeff =A(p) for the case p=600 kg-m™', y = 0.3. By formula (10) we shall deter-
mine the general formula of tuff porosity :

p = 0.76.

* Because of the subdivisions we obtain different values for kg of a dendri-
tic system, and the minimum, Xgffyjy is obtained for p, = pgg.




10.

Assuming p, = psk, We shall find the external porosity:
p, = 0.51.

From Eq. (8) we find the value x = 0.49 corresponding to porosity p, . and
by formulas (1) and (10), the value 4/{ =0.195. ‘Then, assigning the relative
magnitude of narrowings y = 0.3, we find by the graph of Iig.4 the value

oy, a/l) = 0.15
for y = 0.3 and 4/t = 0.195.

By formula (7) we find f(x) = 0.8 and by formula (27) we shall determine
the minimum value ot the effective heat conductivity of the chosen structure:

Aoff = 0.055 w-m™Ledeg™!.

As recalled above, the results of astrophysical measurements of the quan-
tity y and the assumption relative to the density and the heat conductivitv of
the lunar surface layer's matter will lead to the values of the effective heat
conductivity factor A,pg = 0.04 w.m-l.deg-!. Choosing other values of relative
narrowing y, it is possible to obtain the various values of Agef (for example,
when y = 1, Agep =0.09; for y = 0.1 , xggg =0.02; for y = 0.01, rggg= 0.01;
for y = 0.001, Xggp =0.001). In other words, it is possible to encompass all
the intermediate values of the effective heat conductivity factor from a solid
body with communicating pores and skeleton with beams of constant cross section
to granular systens.

The solution of the inverse problem (determination of body's structure by
its effective heat conductivity) requires additional data on the structure of
the body: it is necessary to make assumptions about body porosity, the relative
value of skeleton narrowing and so forth. Consequently, the knowledge of only
one parameter iqff does not allow us to bring forth an unambiguous jiigment
on the structure of the body. Nevertheless, the method considered above may
be eventually useful in the case of complex study of the problem.

o ; VA
A ,W{tm-m-zpao.) '
0t /;;/ i///
r /
" ﬁ// //
yALa
/ ,/*,//// Fig.5. Graph of the dependence of
pay the effective tuff's heat conducti-

006

o

e d vity on the density and the form of

the structure

N
\_\ N

o L

0
[000¢

\

I
|

~
o

6 P.ﬂ')‘z(xz ')

x#xx T HE END xxx




11.

REFERENCES

1. V. T. ODELEVSKIY. ZIIF, 21, 667, 1951,

2. A. F. CHUDNOVSKIY. Teplofizicheskiye kharakteristiki dispersnykh materialov,
GIEML, M., 1962,

3. G. N. DUL'NIV. IFzZH, 9, No. 3, 399, 1965.

4. G. N. DUL'NIEV, Z. V. SIGALOVA. IFZH, 7, No. 10, 4y, 1904.
5. V. S. TROITSK1Y. 1Izv. vyssh. uch. zav.--Radiotizika, 5, 885, 1962.
6. J. D. HALAJIAN. Grumman Research Department Report, RE-197J, 1965.

7. G. KARSLOU, D. EGER. Teploprovodnost' tverdykh tel, izd. Nauka, M., 1964.

8. M. G. KAGANER, A. 1. GLEBOVA. Kislorod, No. 1, 1961.

9. Voprosy glubokogo okhlazhdeniya, sb. statey pod red. prof. Malikova, I1, M,
1961.

10. FR. BERCH, ZH. SHERER, G. SPAYSER. Spravochnik dlya geologov po fizicheskim
konstantam, IL, M, 1949,

Article received on
20 January 1966

Contract No. NAS-5-12487 Translated by
Volt Technical Corporation ANDRE L. BRICHANT
Suite 606, 1145 19th Street, N.W.,

Washington, D.C. 20036




